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One important cause of very low attainment in arithmetic
(dyscalculia) seems to be a core deficit in an inherited
foundational capacity for numbers. According to one set
of hypotheses, arithmetic ability is built on an inherited
system responsible for representing approximate numer-
osity. One account holds that this is supported by a
system for representing exactly a small number (less than
or equal to four4) of individual objects. In these
approaches, the core deficit in dyscalculia lies in either
of these systems. An alternative proposal holds that the
deficit lies in an inherited system for sets of objects and
operations on them (numerosity coding) on which arith-
metic is built. I argue that a deficit in numerosity coding,
not in the approximate number system or the small
number system, is responsible for dyscalculia. Neverthe-
less, critical tests should involve both longitudinal studies
and intervention, and these have yet to be carried out.

Why are people bad at learning arithmetic?
Low numeracy is a serious handicap for individuals and a
major cost for nations (see [1] for data relevant to the UK).
It makes individuals less employable, is a risk factor for
depression in adulthood and significantly reduces lifetime
earnings. In the UK, approximately 25% of adults have
poor functional numeracy [2]. Low arithmetic attainment
has been attributed in the past to a deficit in general
cognitive abilities such as working memory (WM) [3]
and executive function [4], and there is evidence that these
factors affect arithmetic learning and scholastic attain-
ment more generally [3]. Many social and cognitive factors
affect arithmetic learning (Box 1). This means that the
presenting symptoms can be very varied and the underly-
ing causes are difficult to identify.

Arithmetic difficulties and disabilities frequently co-
occur with other developmental disorders, especially read-
ing and digit span deficits and attention deficit hyperactiv-
ity disorder [5]. Individuals seriously affected, such as
those classified with developmental dyscalculia [6] or
mathematics learning disability [7] (Table 1), which both
identify the same construct, have a modal prevalence of
approximately 6.5% [8].

Several strands of recent evidence argue that very
low arithmetic attainment can be an isolated deficit. For
instance, several studies have found low attainment in
learners matched for IQ and WM [9]. Recent evidence
suggests that factors specific to the domain of numbers

and arithmetic make a major independent contribution to
low arithmetic attainment. In a longitudinal study by
Geary and colleagues, tests on understanding the numer-
osity of sets and on estimating the position of a number on a
number line were two important predictors of low achieve-
ment in mathematics, affecting some 50% of the sample,
and of mathematics learning disability, affecting approxi-
mately 7% of the sample [10]. Using multivariate genetic
analysis in a sample of 1500 pairs of monozygotic and 1375
pairs of dizygotic 7-year-old twins, Kovas and colleagues
found that approximately 30% of the genetic variance was
specific to mathematics [11]. In a study of first-degree
relatives of dyslexic probands, principal component analy-
sis revealed that numerical abilities constituted a separate
factor, with reading-related and naming-related tasks be-
ing the two other principal components [12].

Taken together, these studies raise the possibility that
difficulties and disabilities in learning arithmetic could
arise from selective impairment in a domain-specific
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Glossary

Approximate numerosity tasks: tasks involving clouds of dots (or

other objects) typically too numerous to enumerate exactly in the

time available. One common task is to compare two clouds of dots.

Addition and subtraction tasks for which the solution is compared

with a third cloud of dots are also used. (The term approximate

arithmetic is sometimes used when an exact answer is not available

or not needed: e.g. is 73 + 98 closer to 180 or to 130?)

Cardinality principle: in the development of counting, understand-

ing that the last word in the count represents the number of objects

in the set counted.

Distance effect: number comparison, whether symbolic or non-

symbolic, is slower and more error-prone as the number magni-

tudes become more similar (Figure 1).

Intraparietal sulcus (IPS): brain area for core number processing

such as simple enumeration, estimation, subitizing and comparison.

Functional specialization of the left and right IPS develops with time

and experience.

Numerosity: number of objects in a set.

Problem size effect: arithmetic problems involving larger numbers

are harder than those involving smaller numbers, even for highly

practiced sums and multiplications. Explanations of the effect vary.

Weber’s law, Weber fraction and numerical acuity: psychologist

Ernst Weber stated ‘equal relative increments of stimuli are

proportional to equal increments of sensation.’ That is, the

difference threshold depends on the proportional and not the

absolute difference between two quantities. The Weber fraction is

the proportional difference that is reliably detected. Thus, the

smaller the Weber fraction, the better is the discrimination between

two quantities. Numerical acuity refers to the Weber fraction of two

approximate numerosities.
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capacity. Indeed, recent reviews have proposed that devel-
opmental dyscalculia follows from a core deficit in this
domain-specific capacity [5,6,9,13,14].

Domain-specific foundational capacities for arithmetic
Here I briefly outline proposals for a domain-specific ca-
pacity for numbers before discussing whether this capacity
is foundational for acquiring arithmetic ability.A founda-
tional capacity for numbers is revealed in the ability of
human infants to discriminate on the basis of the numer-
osity of a display [15] and to match numerosity across
modalities [16], which suggests that the capacity is not
tied to one modality and implies a relatively abstract
understanding of numerosity Box 2.

There is also extensive evidence from converging
sources of specialized neural networks for numerical pro-
cessing and calculation. Neurological damage has identi-
fied the left parietal lobe as a critical area in calculation, in
particular the left angular gyrus [17]. There is also evi-
dence from case studies that the right parietal lobe is

specifically involved in rapid enumeration [18]. Novel
arithmetic problems, word problems and reasoning about
arithmetic involve the prefrontal cortex [19]. Functional
neuroimaging has confirmed a role for the left angular
gyrus in calculation [20], especially for the retrieval of
arithmetic facts [21], whereas simple number tasks, such
as magnitude comparison, typically show bilateral intra-
parietal sulcus (IPS) implementation [20,22–24]. Simple
enumeration is frequently found most prominently in the
right IPS [25].

The existence of specialized neural networks for numer-
ical processing is perhaps most clearly revealed in primate
studies showing that number-related neural activity in
monkeys carrying out numerical tasks occurs in brain
networks homologous to those activated in humans carry-
ing out similar tasks [26].

To be foundational, representations of numbers must
be capable of being entered into arithmetic operations.
Formally, arithmetic is interpretable in terms of manip-
ulations on sets [27,28] andmuch of early learning is based
on physical manipulation of sets of objects [29]. Therefore,
representations must be capable of being entered into set-
based operations. This will involve both number abstrac-
tion (the capacity to represent the numerosity of a set)
fromnumber reasoning (the capacity to use number repre-
sentations in arithmetic operations) [30]. The typical de-
velopment of arithmetic competencies for whole numbers
is given in Table 2. Therefore, the relevant foundational
capacities must be able to represent numerosities of sets
abstractly (independently of the properties of the objects
in the set) and must be able to carry out arithmetic
operations on them, specifically the standard school opera-
tions of addition, subtraction, multiplication and division.
Of course, arithmetic, even in primary school (K–6),
involves fractions and decimals as well as whole numbers.

As preconditions, foundational capacities for number
reasoning must be able to establish the numerical equiva-
lence or non-equivalence of two sets through one-to-one
correspondence, and to distinguish transformations that
do and do not affect numerosity. These requirements,
already identified by Piaget [31], constitute benchmarks
against which to evaluate theoretical accounts of the
foundational capacities supporting the development of
arithmetic.

The approximate number system (ANS)
Although there is little doubt that we share with many
nonhuman species a system for estimating and comparing
approximate numerosities [26,32], the role this system
plays in the development of arithmetic remains to be
clarified. The ANS is one system of core knowledge of

Table 1. Definitions of dyscalculia and equivalent constructs

DSM-IV [84] Mathematics disability: the child must substantially underachieve on a standardized test relative to

the level expected given age, education, and intelligence and must experience disruption to academic

achievement or daily living

International Classification

of Diseases 10 [85]

Specific disorder of arithmetical skills: specific impairment in arithmetic skills that is not solely

explicable on the basis of general mental retardation or of inadequate schooling

Department for Education

and Skills UK [86]

Dyscalculia: condition that affects the ability to acquire arithmetic skills. Dyscalculic learners can have

difficulty understanding simple number concepts, lack an intuitive grasp of numbers, and have problems

learning number facts and procedures. Even if they produce a correct answer or use a correct method,

they might do so mechanically and without confidence

Box 1. Factors associated with poor arithmetic learning

The available evidence suggests that there are several factors

underlying low numeracy. For example, low socioeconomic status,

minority ethnic status and gender can all be associated with lower

mathematics attainment [87]. Although it is difficult to assess the

role of poor or inappropriate teaching, the fact that the introduction

of detailed new national primary school strategy for numeracy in the

UK has had only a minor and possibly nonsignificant effect on

numeracy for the group studied is indicative [1]. Even relatively

simple tasks that depend relatively little on the quality of educa-

tional experience, such as comparison of the magnitude of two

single-digit numbers or enumerating a small array of objects, show

wide variation [13,14].

This evidence suggests that individual cognitive characteristics

play a major role in variation in individual attainment. For example,

there is evidence to suggest that IQ and working memory (WM)

contribute to arithmetic attainment [10]. In fact, the usual definitions

of dyscalculia (or equivalent constructs) use discrepancy between

arithmetic attainment and IQ as a criterion (Table 2) [7].

Many authors, most influentially, Piaget, have argued that under-

standing concepts of number and arithmetic is premised on general

cognitive abilities, especially reasoning with class inclusion, transi-

tive inference and quantitative seriation, and the way the child

applies reasoning to interactions with the environment [31]. More

recently, Gardner coupled arithmetic with logic to form one of seven

types of intelligence (termed logical–mathematical) [88]. According

to this approach, difficulties or disabilities in learning arithmetic

would necessarily be associated with difficulties or disabilities in

reasoning and cognitive domains that support it, including,

presumably, WM. More strongly, if these domain-general capacities

are sufficient to learn arithmetic, then the prediction would be that

dyscalculic subjects all have a deficit in a domain-general ability.

However, the data presented in the main text argue strongly against

this conclusion.
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numbers [32] According to this approach, number-abstrac-
tion processes extract some kind of summary statistics
from a scene (which, in principle, could be in a modality
other than visual) that is separate from the processes
implicated in analogue quantity estimation (how many
objects vs how much stuff), but is nevertheless mapped
onto analogue magnitude representations.

The strongest claim is that ‘this nonverbal quantifica-
tion system seems to constitute the phylogenetic and on-
togenetic foundation of all further, more elaborate
numerical skills’ [26], which presumably includes arithme-
tic. In a number of studies, Spelke and colleagues correlat-
ed children’s performance on tasks involving approximate
arithmetic with tasks involving symbolic arithmetic. The
method used to assess ANS functioning is typically non-
symbolic number comparison, whereby the larger of two
random arrays of objects, dots or squares systematically
varied for area is selected. Either the accuracy of the
response or its speed is used to determine individual
numerical acuity. These scores are then correlated with
performance on symbolic tasks [33]. Recent studies report

a correlation between numerical acuity and mathematics
attainment [34,35] (see also Piazza, this issue).

However, there are problems with ANS as a foundation-
al capacity for arithmetic learning. First, the ANS system
is primarily concerned with number abstraction and not at
all with number reasoning. It is unclear how approximate
numerosities, or their analogue representations, satisfy
the two basic preconditions of arithmetic reasoning (see
above). First, one-to-one correspondence cannot be carried
out with approximate sets to establish their equality or
inequality. Second, the effects of different types of trans-
formations cannot be determined on approximate sets.
Therefore, addition of one or subtraction of one might
not be detectable. In any event, the idea that these trans-
formations should affect numerosity cannot be captured by
this type of representation. Conversely, transformations
that do not affect numerosity might well affect estimations
or judgments made by the ANS. It is known, for example,
that the nature of objects to be enumerated [36] and their
visual crowding reduce the accuracy of numerical estima-
tion [37]. A third problem is that approximate numerosities

[()TD$FIG]
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TRENDS in Cognitive Sciences

Figure 1. Numerosity coding. (a) Structure of numerosity coding in a neural network model [60,61]. Numeral, verbal and non-symbolic numbers are mapped onto an

internal code that represents each numerosity as a set of discrete ‘neurons’. For number comparison, each set contributes activation proportional to the number of neurons

activated to a binary (in this example) decision procedure with reciprocal inhibition between nodes. Reaction times are modelled as the number of cycles for the decision

process to settle into one state. This provides a good fit to human reaction time data [60]. Reproduced with permission from [61]. (b) The same internal coding can be used

as part of a system for addition. Reproduced with permission from [61]. (c) To model verbal coding of addition facts, a symbolic route consists of arbitrary codes for the

operands so that contribution of this coding can be evaluated. Reproduced with permission from [61]. The distinction between semantic and symbolic coding facilitates

modelling of the effects of neural damage by reducing the connections between addends and sums. Network performance is worse the greater the damage, but the effect is

greater when the connections within the semantic network are damaged. This reflects the findings in acquired dyscalculic patients that parietal lobe lesions affecting

numerosity representation impair addition and subtraction, whereas damage to temporal lobe language areas affects mappings from symbolic input to output but not

knowledge of arithmetic facts and procedures [62].
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areheld tobe represented logarithmically [38],whichmakes
the use of this representation problematic in addition and
subtraction.

A main prediction from the ANS hypothesis is that
dyscalculic subjects will have a deficit in approximate num-
ber tasks. ANS theory implies that approximate numeros-
ities and symbolic numbers (e.g. 8 and eight) are mapped
onto an analogue magnitude system that supports number
comparison tasks. Thus, symbolic number comparison per-
formance should index underlying numerical representa-
tions, and hence a foundational capacity relevant to
arithmetic capability.

Recent studies have correlated the ability to discrimi-
nate approximate numerosities with low arithmetic attain-

ment [33–35]. Conversely, some research has failed to find
such an association. For example, approximate numerosity
comparison did not discriminate typical from low-numer-
acy 7-year-old [39], 6–8-year-old [40] or 9-year-old children
[41]. However, it is worth noting that symbolic number
comparison using digits rather than arrays of objects is
associated with arithmetic performance in children of 6–8
years [40].

In any event, correlations are not indicative of cause and
it is unclear whether poor performance on ANS tasks is the
cause or consequence of poor arithmetic ability. It is at
least plausible that more work with numbers will lead to
both better performance in number comparison tasks and
better performance in arithmetic. It is worth noting that
better counting skills are correlated with better approxi-
mate estimation [42]; again, more number workmight lead
to improvements in many areas of number skills.

The small numerosity system
Arithmetic is about exact numbers, and to be foundational,
representations of exact numbers need to be developed.
How do approximate representations (of the type the ANS
hypothesis proposes) develop into a sequence of numeros-
ities, each with a unique successor?

One possibility is to exploit our ability to represent
small numerosities without serial enumeration and with
a high degree of precision; this is called subitizing (for a
review see [43], but see [44]). It has therefore been pro-
posed that the perceptual system underlying subitizing
that keeps track of a small number (less than or equal to
four) of individual objects [45] can have numerical content
[46]. The argument is that there are distinct states of this
system for individuating one, two, three or four objects [46].
This enables an individual to make inferences about addi-
tion or subtraction of one, two or three objects. Given that
each state is distinct, a child will learn that distinct states
of the system are associated with distinct number words:
‘one’ with one object, ‘two’ with two objects, ‘three’ with
three objects, an so on [46].

Carey uses the concept of bootstrapping (a form of
induction), so that a child infers from what she knows
about the small numbers and applies this to large numbers
[46] Thus, when she hears ‘five’ in a numerical context, and
the approximate numerosity of about fiveness is active, she
can figure out that the word must refer to an exact numer-
osity – such as one, two, three and four – and therefore
conclude that the word ‘five’ refers not to approximately
five but to exactly five (see [47,48] for assessments of this
argument).

Carey and colleagues introduced a new notion called
enhanced parallel individuation, whereby the contents of
the small number system are treated as a set [49]. This
process is called set-based quantification and enables ap-
plication of the set-based properties of arithmetic. This
seems to go beyond the two core systems of ANS and the
small number system by introducing a third core system
for both number abstraction and number reasoning that
are not available in the former.

A main prediction arising from bootstrapping is that
dyscalculic subjects will suffer from a deficit in the sub-
itizing range. Although there is some evidence that the

Box 2. Methodological problems

� Developmental hypotheses need longitudinal studies to deter-

mine whether the measures used are stable over time. That is, if a

learner is in a slow group at age 5 years, will he or she still be in

the slow group at 11 years or older? If they are not, that will be

unhelpful for predicting outcomes in the long term.

� The stability of measures needs to be contrasted with their

changes over time. Learners get faster and better as they get

older. What are the typical and atypical trajectories of these

changes?

� Are the slowest or lowest group at age 5 years simply delayed or

are they qualitatively different on the basic measures? For

example, will the parameters of their enumeration or number

comparison performance always differ from their peers?

� Most studies use a single measure of underlying capacity, which

might lead to artefacts. It is critical to use convergent measures, as

determined by theory.

� Studies assume that graded differences in underlying capacity

will lead to graded differences in arithmetic attainment. However,

it might be that the underlying capacity only needs to be good

enough. (According to the Matisse effect, having colour blindness

will prevent you from being the next Matisse, but normal colour

vision will not ensure that you are.)

� Studies of number reasoning are needed to complement studies

of number abstraction.

� Prevalence studies should use a gold standard criterion based on

stable predictive measures.

Table 2. Typical development of whole number competencies
in arithmetic [29]

Age Typical development

0;0 Can discriminate on the basis of small

numerosities

0;4 Can add and subtract one

0;11 Discriminates increasing from decreasing sequences of

numerosities

2;0 Begins to learn sequence of counting words

Can assign one-to-one correspondence in a sharing task

2;6 Recognizes that number words mean more than one

(‘grabber’)

3;0 Counts out small numbers of objects

Can recognize transformations that affect number

3;6 Can use the cardinality principle to establish numerosity

of set

4;0 Can use fingers to aid adding

5;0 Can add small numbers without being able to count

out sum

5;6 Understands commutativity of addition

6;0 Piagetian ‘conservation of number’

6;6 Understands complementarity of addition and subtraction

7;0 Retrieves some arithmetic facts from memory

Review Trends in Cognitive Sciences Vol.14 No.12
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small number system is impaired in dyscalculic learners
[50], enumeration of the entire range from one to nine is
also typically impaired [9]. Even if a selective deficit in
small numerosities is observed in dyscalculic subjects and
others with delayed counting and arithmetic, this may be
because subitizing enables early counters to check the
result of their counting [51].

A second prediction from the small number hypothesis
is that language impairments will affect number vocabu-
lary, which in turn should affect the development of exact
number concepts. However, studies of children with spe-
cific language impairment (SLI) suggest that they have no
impairment in tasks on number comparison or numerical
estimation [52]. Even more strikingly, they outperform
learners matched for language in nonverbal number tasks
[53], suggesting that grasp of the counting word sequence,
for which their performance is generally poorer, is not the
main driver of magnitude representation. However, they
performmore poorly onmany arithmetic tasks that depend
on fact retrieval and more complex arithmetic procedures
[54].

Numerosity coding
Piaget maintained that the concept of number, by which he
meant cardinal number, is based on sets [31]. However, he
thought that conservation of number under numerosity-
irrelevant transformations was only possible at approxi-
mately the age of 4 years, when a particular stage in logical
reasoning had been reached [31].

Since then, many studies have indicated that human
infants can use the numerosity of visual arrays as a
discriminative stimulus [15]. Moreover, infants can select
collections of objects and treat them as a single unit [55,56].
These findings suggest that the idea of treating a collection
of objects as a set might be present early in ontogeny. This
would mean that a set can be a type of object that can itself
take a property. This property need not be something
common to the objects in the set, but could be a property
of the set itself. One such property is its numerosity (a
psychological way of talking about the logical concept of
cardinality). Studies of infant behaviour suggest that these
properties can be intermodal and therefore relatively ab-
stract in the sense that the property of a set (e.g. eightness)
is not the property of any member of the set [16,57].

The hypothesis that humans inherit a capacity to quan-
tify over sets is not new. This was essentially the proposal
of Gelman and Gallistel in 1978 [30], who hypothesized
that pre-counting children, like many other species, pos-
sess numerons, an ordered sequence of numerosity con-
cepts (e.g. the numeron for one, the numeron for two and so
on). Learning to count is essentially a developmental
process of learning to associate an ordered sequence of
counting words with an ordered sequence of numerons.
The concept of fiveness pre-exists acquisition of the knowl-
edge that the word five refers to the numerosity fiveness.

More recently, Halberda and Feigenson suggested that
the ‘concept set is required and that this notion cannot
come from object tracking, the approximate number sys-
tem, or language. . . Conceiving of a set requires represent-
ing the hierarchical relationship between individual items
and the larger structure into which they are bound’ [58].

There is also evidence showing that numerosity processing
in the brain is distinct from the processing of continuous
quantity, and that the numerosity of sets of objects dis-
tributed in time is processed by the same mechanisms as
for sets distributed in space [59].

This conceptualization has been captured in a neural
networkmodel called the numerosity code [60,61]. The idea
here is that mental representation of numerosities is a
discrete set of neuron-like elements. Metaphorically, one-
ness is represented by one element, twoness by two ele-
ments, and so on (Figure 2). There is thus a step change
from one numerosity to the next, unlike in the ANS.
Although discrete, this type of representation can para-
metrically capture number comparison accuracy and reac-
tion time (RT) data, as well as arithmetic accuracy and RT
data, including the well-known problem size effect, in
which RTs increase with the size of the sum (Glossary)
[60,61]. Note that the model includes a standard decision
procedure used widely in neural network modelling.

A main prediction arising from the numerosity coding
hypothesis is that dyscalculic subjects will suffer from a
deficit in enumerating sets. Although this might seem like
a simple extension of small number coding, no upper limit
or a role for attention is assumed. In fact, several studies of
dyscalculia have shown this in group studies [9] and in
individual cases [41].

The numerosity coding hypothesis further predicts that
impaired numerosity representations will affect addition.
The effects of impaired representations of numerosity on
addition within the neural network model have been sim-
ulated [62]. Both semantic representations (numerosities)
and symbolic representations are included in the model
because it has been claimed that addition facts are repre-
sented as non-semantic verbal formulae [63]. In verbal
representations, the form of the representation is arbitrary
with respect to themagnitude of the addends or the results.
The main result is that damage to even a relatively small
proportion of the connections between the numerosity
representations of addends and results affected accuracy,
whereas damage to the symbolic connections had a much
smaller effect, regardless of whether the answer was sym-
bolic or semantic.

Numerosity coding also enables, although it does not
entail, individuals to use fingers in arithmetic because it
provides a set of elements that can be put in one-to-one

[()TD$FIG]

Figure 2. Structural abnormalities in young dyscalculic brains suggesting a critical

role for the IPS. As noted in the text, both left and right IPS are implicated, possibly

with a greater role for left IPS in older learners. (a) Small region of reduced grey

matter density in left IPS in an adolescent dyscalculic. Reproduced with permission

from [69]. (b) Right IPS with reduced grey matter density in a 9-year-old child.

Reproduced with permission from [70].
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correspondence with a set of fingers. The link between
fingers and arithmetic is close in both development and
the brain. Damage to the left angular gyrus has long been
known to affect both in Gerstmann’s syndrome [64] and
recent research has shown that transcranial magnetic
stimulation over the angular gyrus interferes with both
[65]. It is not clear how either the ANS or the small number
system could support the one-to-one relationship between
the set of fingers (or other body parts) and the set involved
in arithmetic.

A final prediction arising from the numerosity coding
hypothesis is that poor finger representations in the brain
(finger agnosia) will be associated with poor arithmetic
skills. The link between fingers and numbers was described
90 years ago by Gerstmann, who observed frequent co-
occurrence of finger agnosia, dyscalculia, left–right disorien-
tation and apraxia following damage to the angular gyrus,A
developmental form of this syndrome has been documented
and poor finger gnosis in young learners predicts poor
arithmetic [66]. Moreover, poor representations of numer-
osity might also hinder the development of finger use in
early arithmetic, even where the learner has good finger
representations, because the mapping between fingers and
numerosities will be obscure. This hypothesis has still to be
tested.

Role of language
The counting words, or what Carey calls the integer list, is
held to play a special role in the emergence of exact
arithmetic ability during child development [46]. Thus, a
critical test of the role of language in the development of
arithmetic ability is whether language impairments cause
arithmetic disabilities. It is claimed that the role of lan-
guage is to refine approximate representations through
bootstrapping and regular association of a counting word
with a particular approximate numerosity. If this is the
case, then language impairments should affect very simple
numerical tasks, such as numerosity comparison and set
enumeration. Children with SLI invariably show slower
and less accurate verbal counting, held to be the key
element in the transition from approximate to exact repre-
sentations of number. However, these learners perform as
well as age-matched controls in number comparison and
number reasoning, and better than younger language-
matched controls [67].

Nevertheless, symbolization of numerosities is undoubt-
edly important in both individual and collective arithmetic
skills because it can be used to think about numbers and to
communicate facts about them [47]. Moreover, symboliza-
tion supports syntax, which in turn supports reasoning
about large and small numbers that an individual has
never before experienced and perhaps cannot know by
direct experience. This might be particularly important
in understanding fractions, decimals and division more
generally. According to this notion, the development of
arithmetic skills and knowledge could be affected by low
language competence, even when mental representation of
numbers is intact. This does seem to be the case [67,68].

As noted above, children can attain normal levels on
non-symbolic comparison tasks yet show impaired symbol-
ic digit comparison. Noël and colleagues have proposed

that this might reflect a failure to link intact number
concepts with their symbolic representations, which they
suggest is at the root of dyscalculia [39]. However, as noted
above, basic number concepts as measured by non-symbol-
ic comparison tasks can also be defective, so linkage failure
cannot provide a full explanation.

Neural basis of dyscalculia
Can studies of neural differences in structure or activation
in dyscalculic subjects be used to decide among the foun-
dational hypotheses? Structurally, reduced grey matter in
dyscalculic individuals has been observed in areas involved
in basic numerical processing, in the left IPS [69], in the
right IPS [70] and in the IPS bilaterally (Figure 3) [71].
Moreover, there seem to be differences in connectivity
between relevant regions as revealed by diffusion tensor
imaging tractography [71].

Activation differences in non-symbolic number compar-
ison in young learners have also been observed in the right
IPS [72] and symbolic abnormalities in the left IPS [73].
The reason for these apparently conflicting findings is not
yet clear. Two considerations might in time clarify the
picture. First, the organization of numerical activity
might change with age [74], shifting from right dominance
to left dominance [75] as representations of numerosity
link up with language [25]. Second, there might be resid-
ual specializations in the two parietal lobes, with the right
specializing in subitizing and estimation [76,77] and the
left in symbolic processing and calculation. If this is
correct, longitudinal studies that combine neuroimaging
with careful tests of basic numerical capacities might
reveal different developmental trajectories depending
on the locus of the neural abnormality. However, the
representations of approximate numerosities, exact
numerosities and their symbols occupy overlapping neu-
ral systems [23,78] so these cannot yet be used to decide
among hypotheses.

Intervention
The efficacy of interventions designed to strengthen pur-
ported foundational capacities would constitute a critical
test of the hypotheses discussed in preceding sections. For
the ANS, Piazza and colleagues note that their ‘findings
lend support to remediation programs for developmental
dyscalculia that include exercises aimed at retraining the
core non-symbolic sense of number and to cement its links
to the symbols used to denote it’ [79]. The intervention they
cite as appropriate is the Number Race game [80], a digital
environment that is effective in promoting basic number
skills [81]. However, this game uses relatively small exact
numerosities rather than approximate numerosities. It
would be interesting to see if training to improve theWeber
fraction in approximate comparison improves arithmetic,
as the ANS account would predict.

Otherattempts touse digitalmediahave also focussedon
exact rather than approximate numerosities in numerical
tasks involving some very simple arithmetic [82]. Similarly,
the use of board games to promotenumerical understanding
has used small exact numerosities based on dice and
counting with the aim of moving children away from ap-
proximate numerosities represented logarithmically to a
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linear representation [83]. This preliminary evidence sup-
ports the idea that numerosity coding is foundational; how-
ever, systematic tests using approximate numerosities have
yet to be attempted.

Concluding remarks
In summary, although the evidence is not yet conclusive, it
seems that the ANS and small number systems are not
sufficient to support the typical development of arithmetic
skills. A system that represents sets, their numerosities
and the effects of transformations on these sets seems to be
required. Numerosity coding is such a system and there is
extensive evidence that young humans possess this. How-
ever, we have only just begun to collect critical evidence
from longitudinal and intervention studies of the develop-
mental trajectory for typical and atypical learners. Defini-
tive answers are therefore not yet available (Box 3).

Acknowledgements
I am grateful for helpful comments by and discussions with Randy
Gallistel, Justin Halberda and Sashank Varma, and for comments on the
manuscript by three anonymous referees.

References
1 Gross, J. (2009) The Long Term Costs of Numeracy Difficulties,

Every Child Chance Trust, (KPMG)
2 Bynner, J. and Parsons, S. (2005) Does Numeracy Matter More?

National Research and Development Centre for Adult Literacy and
Numeracy, Institute of Education

3 Gathercole, S.E. et al. (2004) Working memory skills and educational
attainment: evidence from national curriculum assessments at 7 and
14 years of age. Appl. Cogn. Psychol. 18, 1–16

4 Bull, R. et al. (2008) Short-term memory, working memory and
executive functioning in preschoolers: longitudinal predictors of
mathematical achievement at age 7. Dev. Neuropsychol. 33, 205–228

5 Rubinsten, O. and Henik, A. (2009) Developmental dyscalculia:
heterogeneity might not mean different mechanisms. Trends Cogn.
Sci. 13, 92–99

6 Butterworth, B. (2005) Developmental dyscalculia. In Handbook of
Mathematical Cognition (Campbell, J.I.D., ed.), pp. 455–467,
Psychology Press

7 Mazzocco, M.M.M. (2007) Defining and differentiating mathematical
learning disabilities and difficulties. InWhy Is Math So Hard for Some
Children? The Nature and Origins of Mathematical Learning
Difficulties and Disabilities (Berch, D.B. and Mazzocco, M.M.M.,
eds), pp. 29–47, Paul H Brookes Publishing

8 Shalev, R.S. (2007) Prevalence of developmental dyscalculia. In Why
Is Math So Hard for Some Children? The Nature and Origins of
Mathematical Learning Difficulties and Disabilities (Berch, D.B.
and Mazzocco, M.M.M., eds), pp. 49–60, Paul H Brookes
Publishing

9 Landerl, K. et al. (2004) Developmental dyscalculia and basic
numerical capacities: a study of 8-9 year old students. Cognition 93,
99–125

10 Geary, D.C. et al. (2009) First-grade predictors of mathematical
learning disability: a latent class trajectory analysis. Cogn. Dev. 24,
411–429

11 Kovas, Y. et al. (2007) The genetic and environmental origins of
learning abilities and disabilities in the early school years. Monogr.
Soc. Res. Child Dev. 72, 1–144

12 Schulte-Körne, G. et al. (2007) Interrelationship and familiality of
dyslexia related quantitative measures. Ann. Hum. Genet. 71, 160–175

13 Butterworth, B. and Reigosa Crespo, V. (2007) Information processing
deficits in dyscalculia. InWhy IsMath So Hard for Some Children? The
Nature and Origins of Mathematical Learning Difficulties and
Disabilities (Berch, D.B. and Mazzocco, M.M.M., eds), pp. 65–81,
Paul H Brookes Publishing

14 Wilson, A.J. and Dehaene, S. (2007) Number sense and developmental
dyscalculia. In Human Behavior, Learning and the Developing Brain
(Coch, D. et al., eds), pp. 212–238, The Guilford Press

15 Starkey, P. and Cooper, R.G., Jr (1980) Perception of numbers by
human infants. Science 210, 1033–1035

16 Jordan, K.E. and Brannon, E.M. (2006) The multisensory
representation of number in infancy. Proc. Natl. Acad. Sci. U. S. A.
103, 3486–3489

17 Cipolotti, L. and van Harskamp, N. (2001) Disturbances of number
processing and calculation. In Handbook of Neuropsychology (Vol. 3,
2nd edn) (Berndt, R.S., ed.), pp. 305–334, Elsevier Science

18 Warrington, E.K. and James, M. (1967) Tachistoscopic number
estimation in patients with unilateral lesions. J. Neurol. Neurosurg.
Psychiatry 30, 468–474

19 Luria, A.R. (1966) The Higher Cortical Functions in Man, Basic Books
20 Dehaene, S. et al. (2003) Three parietal circuits for number processing.

Cogn. Neuropsychol. 20, 487–506
21 Grabner, R.H. et al. (2009) To retrieve or to calculate? Left angular

gyrus mediates the retrieval of arithmetic facts during problem
solving. Neuropsychologia 47, 604–608

22 Piazza, M. et al. (2004) Tuning curves for approximate numerosity in
the human intraparietal sulcus. Neuron 44, 547–555

23 Piazza, M. et al. (2007) A magnitude code common to numerosities and
number symbols in human intraparietal cortex. Neuron 53, 293–305

24 Pinel, P. et al. (2001) Modulation of parietal activation by semantic
distance in a number comparison task. NeuroImage 14, 1013–1026

25 Piazza, M. et al. (2006) Exact and approximate judgements of visual
and auditory numerosity: an fMRI study. Brain Res. 1106, 177–188

26 Nieder, A. and Dehaene, S. (2009) Representation of number in the
brain. Annu. Rev. Neurosci. 32, 185–208

27 Giaquinto, M. (1995) Concepts and calculation. Math. Cogn. 1, 61–81
28 Giaquinto, M. (2001) Knowing numbers. J. Philos. XCVIII, 5–18
29 Butterworth, B. (2005) The development of arithmetical abilities. J.

Child Psychol. Psychiatry 46, 3–18
30 Gelman, R. and Gallistel, C.R. (1986) The Child’s Understanding of

Number, Harvard University Press
31 Piaget, J. (1952)The Child’s Conception of Number, Routledge&Kegan

Paul
32 Feigenson, L. et al. (2004) Core systems of number.Trends Cogn. Sci. 8,

307–314
33 Gilmore, C.K. et al. (2010) Non-symbolic arithmetic abilities and

mathematics achievement in the first year of formal schooling.
Cognition 115, 394–406

34 Halberda, J. et al. (2008) Individual differences in non-verbal number
acuity correlate with maths achievement. Nature 455, 665–668

35 Piazza, M. et al. (2010) Developmental trajectory of number acuity
reveals a severe impairment in developmental dyscalculia. Cognition
116, 33–41

36 Alvarez, G.A. and Cavanagh, P. (2004) The capacity of visual short-
term memory is set both by visual information load and by number of
objects. Psychol. Sci. 15, 106–111

37 Pelli, D.G. and Tillman, K.A. (2008) The uncrowded window of object
recognition. Nat. Neurosci. 11, 1129–1135

38 Dehaene, S. (2004) The neural basis of the Weber–Fechner law: a
logarithmic mental number. Trends Cogn. Sci. 7, 145–147
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